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QI ZHOU AND ZIXING WANG

Abstract. By giving the permutation representation on the finite di-
mensional space, we discovered a basis for generating all possible ma-
trices. Then, we researched the space spanned by n × n permutation
matrices and finally proved Birkhoff’s Theorem.

1. Introduction

In this paper, we will make effort to prove Birkhoff’s Theorem ([?]).
Firstly, we introduce two concepts.

• An n × n matrix with nonnegative real entries is doubly stochastic
if the sum of the entries along any of its rows or columns is equal to
1.

• A linear combination is called convex if the coefficients are nonneg-
ative and their sum is equal to 1.

In 1946, Birkhoff showed the following result.

Theorem 1.1. Every doubly-stochastic n× n matrix can be represented as
a convex combination of at most n2 − 2n + 2 permutation matrices. The
number n2 − 2n+ 2 cannot be replaced by a smaller number.

2. From Abstraction: The Permutation Representation on
Finite-dim Space

The polyhedron Ωn is obtained by taking the convex hull of the set of
n-square permutation matrices, so how to describe permutation matrices is
the first thing we need to do.

We cosider a linear space V = span{e1, e2, · · · , en} = span{B}, then
naturally an action(endomorphisms) E(V ) from Sn onto V can be defined,
as well as the operation
(ϕ+ χ)(x) = ϕ(x) + χ(x), (ϕχ)(x) = ϕ{χ(x)}, ∀ϕ, χ ∈ E(V ), x ∈ V

(2.1)
for which we call it permutation endomorphism. It is obvious that all per-
mutation endomorphism form a multiplicative group, denoted by Π.

Here, we mainly consider those permutations with a single k-cycle
(ei1ei2 · · · eik) = γ, as well as the identity element θ. For different α ∈ Π,
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we denote those basis moving by α by B(α). For each pair B(α) and B(β),
one can verify that the following lemma holds.
Lemma 2.1. Assume α, β ∈ Π, with B(α) ∩B(β) = ∅, then

αβ = α+ β − θ (2.2)
Proof. We consider the following conditions for x ∈ B.

• x ∈ B(α). Note that α(x) still in its k-cycle, hence α(x) ∈ B(α) and
α(x) is invariant for permutation β. Then

(αβ)(x) = α(x)

(α+ β − θ)(x) = α(x) + x− x = α(x)
(2.3)

• x ∈ B(β). It is analogous with x ∈ B(α).
• x ∈ (B(α) ∪B(β))c. Then α(x) = β(x) = x, which infers both sides

are just x.
□

Now we can say a natural but not trivial conclusion, that is, the integral
linear generator of all k-cycle.
Lemma 2.2. Each k-cycle can be expressed as a linear combination of θ,
2-cycles and 3-cycles, with integral coefficients.
Proof. For k = 4, WLOG, we set γ = (e1e2e3e4), then the formula above
makes the assertion correct.

(e1e2e3e4) = (e1e2e3) + (e1e3e4)− (e1e3) (2.4)
Assume for ≤ k − 1 the assertion holds, then we consider a k-cycle γ =

(e1 · · · ek), then γ can be written by
γ = (e1ek)(e1e2 · · · ek−1) (2.5)

By induction assumption, (e1e2 · · · ek−1) can be written by an integral linear
combination of θ, 2-cycle and 3-cycle. If a cycle is disjoint with (e1ek), then
use Lemma ?? to divide αβ into α+ β − θ. And for other cases, we have

(e1ek)(e1ej) = (e1ejek)

(e1ek)(e1ek) = θ

(e1ek)(ekej) = (e1ej)

(e1ek)(ekejei) = (e1ekejei) = (e1ekej) + (e1ejei)− (e1ej)

(e1ek)(e1ekej) = (ekej)

(2.6)

hence the induction is correct, and the lemma is proved. □
Actually, there are also a batch of redundant generators in ≤ 3-cycles.

For a much more precise estimation, we have the following lemma.
Lemma 2.3. Fix e be any element in B, and denote Γ(e) be the subset of Π
consisting of θ, 2-cycles and 3-cycles that moves e. Then Γ(e) can integrally
and linearly generate Π.
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Proof. It suffices to show that for each 2-cycle and 3-cycle can be expressed
by Γ(e). In fact, the following relations hold

(e1e2e3) = (ee1e2) + (ee2e3)− (ee1e3)− (ee2) + (e1e3) (2.7)

then Γ(e) can be a generator set for Π. □

It can still be further simplified, hence becoming truely a set of basis!

Theorem 2.4. For Γ(e) defined on Lemma ??, let Γ be a subset of Γ(e)
by deleting one of (ee1e2) and (ee2e1) for each distinct pair (e1, e2). Then
every element of Γ can be expressed as a linear combination with integral
coefficients of the elements of Γ uniquely.

Proof. Note that

(ee1e2) + (ee2e1) = (ee1) + (ee2) + (e1e2)− θ (2.8)

we can deduce that Π can be integrally and linearly generated by Γ. It
remains to show that elements in Γ are linearly independent.

Denote binary relation iΓj to indicate that (eij) ∈ Γ. So if

pθ +
∑
i ̸=e

qi(ei) +
∑
jΓi

rij(ij) +
∑
kΓl

skl(ekl) = 0 (2.9)

Let yΓx, then use both sides act on x, by linearly independence of B, we
can derive that rxy = 0 whenever yΓx. Then let xΓy, and the act is still on
x, then by comparing the coeffients of y, we have sxy = 0, which indicates

pθ +
∑
i ̸=e

qi(ei) = 0 (2.10)

When acting both sides onto x ̸= e, we obtain qx = 0 by comparing the
coefficients of e, therefore p = 0. They are indeed linearly independent,
hence becoming a basis. □

Till now, for permutation matrices, we have discovered a basis for gener-
ating all possible matrices, then we can also describe its convex hull, as well
as its dimension to approach our goal.

3. Ideal and Reality: Permutation Matrices with Doubly
Stochastic Matrices

Here, with basis {e1, · · · , en}, we are to see what those special matrices
reveals.

Lemma 3.1. Every n×n permutation matrix can be expressed, in a unique
manner, as a linear combination with integral coefficients of the n2− 2n+2
matrices P (ei, ej), 1 ≤ i < j ≤ n and P (e1, ei, ej), 1 < i < j ≤ n. In
particular, the space spanned by n × n permutation matrices, over field R,
is of dimension n2 − 2n+ 2.
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This can be immediately derived by Theorem ??.
In our combinatorial mathematics course, we have already derived the

following results:

Theorem 3.2. A matrix lies in the convex hull of the set of permutation
matrices if and only if it is doubly-stochastic.

Let X ⊂ Rn, we have the following notations for proof:
• C(X): The liear variety spanned by X. More precisely,

C(X) = {λ1x1 + · · ·+ λkxk|
∑

λi = 1, xi ∈ X, k ∈ Z+} (3.1)

• D(X): The convex hull of X.
• L(X): The vector space spanned by X.

By definition, one can deduce that

Lemma 3.3. If 0 /∈ C(X), then dim(B(X)) = 1 + dim(C(X)).

We also have a significant covering lemma, which is the key to illustrate
why the maximum n2 − 2n+ 2 can be reached.

Lemma 3.4. Let X be a convex set in Rn with dimension dim(C(X)) = m.
Then X cannot be convered by a finite number of linear varieties of dimension
less than m.

Proof. Assume not, then we can write
X ⊂ C1 ∪ · · · ∪ Ck (3.2)

where Ci are linear varieties of dimension less than m. Set r be the least
integer that X ⊂ C1 ∪ · · · ∪ Cr, then r > 1, and

Cr ∩X ̸⊂ C1 ∪ · · · ∪ Cr−1 (3.3)
Hence ∃u ∈ Cr ∩X, and u /∈ C1 ∪ · · · ∪ Cr−1. And also there exists v ∈ X
and v /∈ Cr.

Consider the closed segment L = uv, then l is not contained in any Ci,
which shows that L ∩ Ci has at most one point. Therefore

X ∩ L ⊂ L ∩ (∪Ci) = ∪(Ci ∩ L) (3.4)
is a finite set. However, u, v ∈ X, and X is convex, there must have infinitely
points in X ∩ L, which makes a contradiction! □

Also, a traditional conclusion can be used for the final proof of Brinkhoff’s
theorem, one can find a brief proof in [?].

Lemma 3.5. Suppose X ⊂ Rn, and dim(C(X)) = m, then each point in
D(X) belongs to the convex hull of m+1 suitable points in X. Furthermore,
if X is finite, then there must be some points in D(X) such that they cannot
be represented by any m points in X.

So here, we are enough to proof the Birkhoff’s Theorem.
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Proof. Suppose Xn be the set of n× n permutation matrices, then we con-
sider

Ln = L(Xn), Cn = C(Xn), Dn = D(Xn) (3.5)
From Lemma ??, we can derive that

dim(Ln) = n2 − 2n+ 2

Note that, the zero matrix does not belong to Cn (Note that the sum of
each line and column must be 1), hence by Lemma ?? we have

dim(Cn) = dim(Ln)− 1 = (n− 1)2

Hence, by Theorem ??, Dn is just the set of all n × n doubly stochastic
matrices. By Lemma ??, each doubly stochastic n × n matrix is in the
convex hull of at most n2− 2n+2 permutation matrices, and there must be
some matrices that cannot be any convex conbination of every n2 − 2n+ 1
permutation matrices, thus we have already proved Birkhoff’s theorem! □
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