BIRKHOFF’S PROBLEM WITH ALL PROOFS

QI ZHOU AND ZIXING WANG

ABSTRACT. By giving the permutation representation on the finite di-
mensional space, we discovered a basis for generating all possible ma-
trices. Then, we researched the space spanned by n X n permutation
matrices and finally proved Birkhoft’s Theorem.

1. INTRODUCTION

In this paper, we will make effort to prove Birkhoff’s Theorem ([?]).
Firstly, we introduce two concepts.

e An n X n matrix with nonnegative real entries is doubly stochastic
if the sum of the entries along any of its rows or columns is equal to
1.

e A linear combination is called convex if the coefficients are nonneg-
ative and their sum is equal to 1.

In 1946, Birkhoff showed the following result.

Theorem 1.1. Fvery doubly-stochastic n X n matriz can be represented as
a convex combination of at most n® — 2n + 2 permutation matrices. The
number n? — 2n + 2 cannot be replaced by a smaller number.

2. FROM ABSTRACTION: THE PERMUTATION REPRESENTATION ON
FINITE-DIM SPACE

The polyhedron €2, is obtained by taking the convex hull of the set of
n-square permutation matrices, so how to describe permutation matrices is
the first thing we need to do.

We cosider a linear space V' = span{ej,es,- - ,e,} = span{B}, then
naturally an action(endomorphisms) E(V) from S, onto V' can be defined,
as well as the operation

(@ +x)(@) =o(z) + x(x), (¢x)(z) =¢{x(x)}, Vo, x€ E(V),zeV
(2.1)
for which we call it permutation endomorphism. It is obvious that all per-
mutation endomorphism form a multiplicative group, denoted by II.
Here, we mainly consider those permutations with a single k-cycle
(€ €iy -+ - €i,) = 7, as well as the identity element 6. For different a € II,
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we denote those basis moving by o by B(«). For each pair B(a) and B(f),
one can verify that the following lemma holds.

Lemma 2.1. Assume «, 8 € I, with B(a) N B(B) = 0, then
af=a+p-0 (2.2)
Proof. We consider the following conditions for z € B.
e r € B(«a). Note that «(x) still in its k-cycle, hence a(x) € B(«) and
a(z) is invariant for permutation 8. Then
(aB)(z) = afx)
(a+p—-0)(z)=a(z)+z—z=a(x)
e r € B(f). It is analogous with = € B(«).
o z € (B(a)UB(B))¢. Then a(z) = f(x) = x, which infers both sides

are just x.

(2.3)

O

Now we can say a natural but not trivial conclusion, that is, the integral
linear generator of all k-cycle.

Lemma 2.2. Fach k-cycle can be expressed as a linear combination of 0,
2-cycles and 3-cycles, with integral coefficients.

Proof. For k = 4, WLOG, we set v = (ejezesey), then the formula above
makes the assertion correct.

(e1eaeseq) = (e1eze3) + (e1e3eq) — (e1€3) (2.4)

Assume for < k£ — 1 the assertion holds, then we consider a k-cycle v =
(e1---eg), then v can be written by

v = (erex)(erea - ex—_1) (2.5)

By induction assumption, (ejes - - - ex_1) can be written by an integral linear
combination of 6, 2-cycle and 3-cycle. If a cycle is disjoint with (ejey), then
use Lemma 7?7 to divide a8 into o + 8 — 6. And for other cases, we have

(erex)(ere)) = (erejer)
(erer)(erer) =6
(erex)(ere;) = (ere)) (2.6)
(erer)(exejei) = (ererejes) = (erere;) + (erejeq) — (e1e;)
(erer)(ererej) = (ere;)

hence the induction is correct, and the lemma is proved. ([

Actually, there are also a batch of redundant generators in < 3-cycles.
For a much more precise estimation, we have the following lemma.

Lemma 2.3. Fiz e be any element in B, and denote I'(e) be the subset of 11
consisting of 0, 2-cycles and 3-cycles that moves e. Then I'(e) can integrally
and linearly generate I1.
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Proof. 1t suffices to show that for each 2-cycle and 3-cycle can be expressed
by I'(e). In fact, the following relations hold

(e1e2e3) = (eerea) + (eezes) — (eeres) — (eea) + (eres) (2.7)

then I'(e) can be a generator set for II. O

It can still be further simplified, hence becoming truely a set of basis!

Theorem 2.4. For I'(e) defined on Lemma ?7, let T' be a subset of I'(e)
by deleting one of (eere2) and (eezer) for each distinct pair (e1,e2). Then
every element of I' can be expressed as a linear combination with integral
coefficients of the elements of I' uniquely.

Proof. Note that
(eere2) + (eezer) = (ee1) + (ee2) + (e1e2) — 6 (2.8)

we can deduce that II can be integrally and linearly generated by I'. It
remains to show that elements in I' are linearly independent.
Denote binary relation iI'j to indicate that (eij) € I'. So if

po + Z qi(ei) + Z TU(Zj) -+ Z skl(ekl) =0 (29)
ie 3T kT
Let yI'x, then use both sides act on x, by linearly independence of B, we
can derive that r;, = 0 whenever yI'z. Then let xI'y, and the act is still on
x, then by comparing the coeffients of y, we have s;, = 0, which indicates

pl + Z gi(ei) =0 (2.10)

i#e
When acting both sides onto = # e, we obtain ¢, = 0 by comparing the
coefficients of e, therefore p = 0. They are indeed linearly independent,
hence becoming a basis. ([l

Till now, for permutation matrices, we have discovered a basis for gener-
ating all possible matrices, then we can also describe its convex hull, as well
as its dimension to approach our goal.

3. IDEAL AND REALITY: PERMUTATION MATRICES WITH DOUBLY
STOCHASTIC MATRICES

Here, with basis {e1,--- ,e,}, we are to see what those special matrices
reveals.

Lemma 3.1. Every n X n permutation matriz can be expressed, in a unique
manner, as a linear combination with integral coefficients of the n® — 2n + 2
matrices P(ej,e;),1 < i < j < n and Pl(ej,e;,e;),l <i < j<n. In
particular, the space spanned by n X n permutation matrices, over field R,
is of dimension n®> — 2n + 2.
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This can be immediately derived by Theorem 77.
In our combinatorial mathematics course, we have already derived the
following results:

Theorem 3.2. A matriz lies in the convex hull of the set of permutation
matrices if and only if it is doubly-stochastic.
Let X C R™, we have the following notations for proof:

e C(X): The liear variety spanned by X. More precisely,
CX)={Mm+ -+ M| D N=1lm eX,keZt+}  (3.1)

e D(X): The convex hull of X.
e L(X): The vector space spanned by X.

By definition, one can deduce that
Lemma 3.3. If0 ¢ C(X), then dim(B(X)) = 1 + dim(C(X)).

We also have a significant covering lemma, which is the key to illustrate
why the maximum n? — 2n + 2 can be reached.

Lemma 3.4. Let X be a convex set in R™ with dimension dim(C'(X)) = m.
Then X cannot be convered by a finite number of linear varieties of dimension
less than m.

Proof. Assume not, then we can write
XCcCU---UCk (3.2)

where C; are linear varieties of dimension less than m. Set r be the least
integer that X C Ch U--- U, then r > 1, and

CrﬂX¢ClU"'UCT71 (3.3)

Hence Ju € C, N X, and u ¢ C; U---UC,_1. And also there exists v € X
and v ¢ C,.

Consider the closed segment L = uwv, then [ is not contained in any Cj,
which shows that L N C; has at most one point. Therefore

XNLcLnN (UCZ) = U(CZ N L) (3.4)
is a finite set. However, u,v € X, and X is convex, there must have infinitely
points in X N L, which makes a contradiction! O

Also, a traditional conclusion can be used for the final proof of Brinkhoff’s
theorem, one can find a brief proof in [?].

Lemma 3.5. Suppose X C R", and dim(C(X)) = m, then each point in
D(X) belongs to the convex hull of m+1 suitable points in X . Furthermore,
if X is finite, then there must be some points in D(X) such that they cannot
be represented by any m points in X.

So here, we are enough to proof the Birkhoff’s Theorem.
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Proof. Suppose X, be the set of n X n permutation matrices, then we con-
sider
L,=L(X,), C,=C(X,), D,=D(X,) (3.5)
From Lemma 77, we can derive that
dim(L,) = n* — 2n + 2

Note that, the zero matrix does not belong to C,, (Note that the sum of
each line and column must be 1), hence by Lemma 7?7 we have

dim(C,,) = dim(L,) — 1 = (n —1)?

Hence, by Theorem 7?7, D, is just the set of all n x n doubly stochastic
matrices. By Lemma 7?7, each doubly stochastic n X n matrix is in the
convex hull of at most n? — 2n + 2 permutation matrices, and there must be
some matrices that cannot be any convex conbination of every n? — 2n + 1
permutation matrices, thus we have already proved Birkhoff’s theorem! [J
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